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1. Introduction

The AdS/CFT correspondence has stimulated the study of asymptotically anti-de Sitter

spacetimes in various dimensions. Quite often these spacetimes are solutions of a super-

gravity theory containing gravity coupled to bosonic matter fields. In this setting, it is
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common to search first for BPS solutions which support Killing spinors. The BPS con-

ditions are first order differential equations which are frequently easier to solve than the

Lagrangian field equations. BPS solutions have residual supersymmetry. They are a small

subset of the solutions one would like to study.

The purpose of the fake supergravity method is to obtain workable first order equations

whose solutions also satisfy the Lagrangian equations of motion, but are applicable to

non-BPS solutions of true supergravity theories and to theories which have only a rough

resemblence to supergravity. Even the limitation to spacetime dimension D ≤ 11 can

be overcome in this framework. The method proceeds by formulating fake Killing spinor

equations whose integrability conditions are the needed first order equations. One can

then attempt to solve these equations to find new spacetimes or, in combination with

the Witten-Nester approach to gravitational stability, use it to establish linear stability of

previously known non-BPS solutions.

This approach was first devised for flat-sliced domain walls in [1] and [2] for a bosonic

action of the form

SB =

∫

dd+1x
√−g

[

1

2
R − 1

2
gµν∂µφ∂νφ − V (φ)

]

. (1.1)

The metric and scalar field of these domain walls take the form

ds2
d+1 = e2A(r)ηµνdxµdxν + dr2 , (1.2)

φ = φ(r) .

The warp factor e2A multiplies the metric of d-dimensional Minkowski spacetime. The

basic quantity in the fake supergravity method is the real superpotential W (φ) which is

related to the scalar potential by

V (φ) = 2(d − 1)2
[

W ′(φ)2 − d

d − 1
W (φ)2

]

. (1.3)

The first order flow equations obtained in [1, 2], namely

φ′(r) = −2(d − 1)W ′(φ) ,

A′(r) = 2W (φ(r)) , (1.4)

were later shown in [3] to be Hamilton-Jacobi equations for the domain wall dynamics

obtained from the field equations of (1.1), in which W (φ) is Hamilton’s principal function.

The fake supergravity (or Hamilton-Jacobi) method has had several applications, especially

to brane-world models [2, 4, 5] with stabilized inter-brane spacing.

The fake supergravity method works, and is far less restrictive than true supergravity,

because it requires the general structure of supergravity only to lowest order in fermion

fields. Specifically, as we show in section 2, one can find a fermion action SF, strictly bilinear

in the gravitino and dilatino fields ψµ and λ, such that the sum SB + SF is invariant under

local supersymmetry, but only to linear order in ψµ and λ. To this order, one requires

detailed γ-matrix algebra, but dimension-specific properties such as Fierz rearrangement
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are not used. The fake Killing spinor equations are the conditions δψµ = 0 and δλ = 0

obtained from the fermion variations used to demonstrate linear local supersymmetry.

The next step in the development was the extension of the method to AdSd sliced

domain walls [6]. The new metric ansatz replaces the Minkowski metric ηµν in (1.2) with

an AdSd metric gµν . The fake supergravity framework for flat-sliced walls must be modified

because the Lagrangian equations of motion change. The needed modification incorporates

a feature of true D = 5, N = 2 supergravity, namely that the scalar superpotential W is

replaced by an SU(2) matrix1 W subject to a further constraint reviewed in section 2.3.

This modification was applied [6] to the stability problem of the Janus solution [8] of D = 10

Type IIB supergravity. The structure of fake supergravity was further studied in [9].

In this paper we extend the fake supergravity method to R×S3-sliced domain walls in

a 5-dimensional bulk. Our motivation is to explore the AdS/CFT correspondence for the

situation of the boundary gauge theory on R×S3. Many recent applications of AdS/CFT

involve the D = 4 N = 4 SYM theory on this manifold.

The bosonic action which governs our system is

SB =

∫

d5x
√−g

[

1

2
R − 1

2
gµν∂µφ∂νφ − 1

4
Q(φ)FµνFµν − V (φ)

]

. (1.5)

It includes an abelian gauge field Aµ with non-minimal coupling to the scalar φ. In section 3

we construct actions SF and Sgauge quadratic in the gravitino and dilatino fields ψµ and λ

such that the total action S = SB + SF + Sgauge is invariant to linear order in the fermions

under local supersymmetry transformations. These are motivated by the structure of real

5D supergravity. A main consequence of linear local supersymmetry is that the function

Q and the superpotential W are required to take the specific form

Q(φ) = e2kφ , W (φ) = w1 e−kφ + w2 e
2
3k

φ , (1.6)

where wi are constants of integrations. Thus the only freedom is the choice of the constant

k. This is quite different from the previously studied fake supersymmetric actions which

admitted arbitrary superpotentials in the absence of the gauge field. The scalar potential

resulting from W in (1.6) via (1.3) has a local maximum. Scalar fluctuations around this

local maximum have mass2 saturating the Breitenlohner-Freedman (BF) bound [10] for

all k. The bulk scalar φ approaches the local maximum at the AdS boundary of all our

solutions, and is therefore dual to a ∆ = 2 boundary gauge theory operator.

For R × S3-slicings the gauge field is necessary for non-trivial solutions of the first

order equations. We impose a static solution ansatz which preserves spherical symmetry

and includes only an electric component of the gauge field. This leaves four functions to

be solved for as functions of a radial coordinate r: the scalar φ(r) field, the gauge potential

At = a(r), and two functions A(r) and B(r) which are warp factors in the metric. The

fake supersymmetry transformations of the gravitino and dilatino yield fake Killing spinor

conditions δψµ = 0 and δλ = 0. Their integrability conditions give rise to first order “flow”

equations for the four functions A, B, φ, a of our ansatz (section 4.1).

1A formulation in terms of the Hamilton-Jacobi equations was given in [7].

– 3 –
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The first order equations can be solved analytically; we show how in section 4. The

solutions of the flow equations are fake BPS in the sense that they admit fake Killing

spinors. The electrically charged solutions are all nakedly singular, but a non-extremality

parameter µ can be introduced to hide the singularity behind an event horizon. The general

non-extremal solutions can then be written

ds2
5 = −H−2p f dt2 + Hp (f−1 dy2 + y2dΩ2

3)

At = − q̃

q

√

3

2 + 3k2

(

H−1 − 1
)

(1.7)

e
2
3k

φ = Hp ,

with

H(y) = 1 +
q

y2
, f(y) = 1 +

y2

L2
H3p − µ

y2
(1.8)

and

p =
2

2 + 3k2
, q̃2 = q(q + µ) . (1.9)

Asymptotically (y → ∞) the solutions approach global AdS5. The parameter q̃ is propor-

tional to the electric charge.

Various special cases of the solutions (1.7) had previously appeared in the litera-

ture [11 – 15]. Most notably, the fake BPS solutions (which have µ = 0) are truly su-

persymmetric for the special values of k = 0, 1/
√

3, 2/
√

3 as they then arise as solutions

of consistently truncated D = 5, N = 2 gauged U(1)3 supergravity theory (see for in-

stance [16]). The Schwarzschild type mass term µ was added in [13] providing a horizon,

and thus giving regular non-BPS charged spherically symmetric black holes. (In AdS5,

regular BPS black holes carry non-vanishing angular momentum [17].) The type IIB lift of

the solutions was given in [15, 18], and later interpreted in [14] as “superstars” describing

continuous distributions of giant gravitons.

After we found the solutions (1.7) for general k, we learned that they had been con-

structed earlier by Gao and Zhang [19] who worked with the second order Lagrangian field

equations. Fake supergravity gives some insight into the structure of the scalar potential.

Here we also analyze bulk and AdS/CFT properties of the solutions.

In the context of the AdS/CFT correspondence, previously studied domain wall solu-

tions and their generalizations had interpretations as gravitational duals of renormalization

group flows, and a holographic c-theorem was derived [20, 21]. Motivated by this, we con-

struct here a c-function which is monotonically decreasing as the scalar flows from the

asymptotic AdS boundary to the interior. This result relies only on the structure of the

field equations.

We compute in section 5 the holographic stress tensor from which we derive the mass

of the system. All fields of the solutions (1.7) approach the boundary at their “vev rate”.

For q > 0, the extremal solution should be the gravity dual of an excited state of the

boundary gauge theory with non-vanishing charge and vev for a scalar operator with ∆ = 2.

When the solutions have horizons, we have the dual of an ensemble of such states at fixed
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temperature. Since the gauge theory is on the compact domain S3, the charge is that of

a global symmetry. For the k-values in which the solutions coincide with the superstars

of [14], this is an SO(2) subgroup of the SO(6) R-symmetry of d = 4 N = 4 SYM theory.

The mass obtained from the holographic stress tensor is suggestive of a BPS bound

saturated for the µ = 0 solutions. We compute the Witten-Nester energy for all solutions,

but find that despite the existence of fake BPS Killing spinors there is an obstruction to

deriving a fully general BPS bound for all k. Restricting to the class of solutions for which

F ∧F vanishes, however, allow us to confirm the bound suggested by the holographic mass

calculation.

Section 6 contains a brief discussion. The main paper is concerned with fake supergrav-

ity in D = 5, but appendix A provides details of the derivation of linear supersymmetry

for general dimensions D = d + 1 ≥ 4. For all k, the bulk scalar is dual to a putative

boundary theory operator of dimension ∆ = d− 2, which is the dimension of a scalar mass

operator. Appendix B analyzes conditions for the existence of horizons, and appendix C

constructs fake Killing spinors for the fake BPS solutions.

2. Basics of fake supergravity

We introduce the basic structure of fake supergravity and present as examples the con-

struction of flat- and AdS-sliced domain wall solutions.

2.1 Structure of real and fake supergravity

Fake supergravity shares the structure of the Lagrangian and transformation rules of super-

gravity, but requires local supersymmetry only to linear order in fermion fields. Linear local

supersymmetry allows more freedom in the bosonic sector, even the freedom of arbitrary

spacetime dimension.

To see why this works, consider a generic true supergravity theory with a collection of

boson and fermion fields B(x) and F (x) and transformation rules which involve arbitrary

spinor parameters ǫ(x). The action S[B,F ] is locally supersymmetric, which means that

the supersymmetry variation

δS =

∫

dDx

(

δL
δB

δB +
δL
δF

δF

)

≡ 0 (2.1)

vanishes identically, for all configurations of B(x), F (x), ǫ(x). In particular, the terms of

each order in F vanish independently. To lowest order, with fermions more specifically

described as gravitinos ψµ(x) and Dirac spinors λ(x), the fermion transformations have

the generic structure

(δB)0 = ǭΓF = ǭ (Γµ ψµ + Γ′ B λ) (2.2)

(δF )0 =

{

(δψµ)0 = (Dµ + Γ′′
µ B)ǫ

(δλ)0 = (Γµ ∂µB + Γ′′′ B)ǫ.
(2.3)

The Γ,Γ′, etc. are matrices of the Clifford algebra with the appropriate tensor structure.
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The lowest order term in δS is linear in the fermions; it takes the form

(δS)lin =

∫

dDx

[

δL
δB

(ǭΓF ) +
δL
δF

(δF )0

]

≡ 0. (2.4)

The variation δL/δB is purely bosonic to this order, and δL/δF is linear in fermions. Note

that (δS)lin still vanishes for all configurations of B(x), F (x), ǫ(x). If ǫ is a Killing spinor,

then, by definition (δF )0 = 0, and (2.4) then reads

(δS)lin =

∫

dDx
δL
δB

(ǭΓF ) = 0. (2.5)

It vanishes for all configurations of B(x) which support Killing spinors and all fermion con-

figurations F (x). Thus the sum over all independent boson fields BI(x) vanishes locally, viz.

∑

I

δL
δBI

(ǭ ΓF )I = 0. (2.6)

If the fermion variations (ǭ ΓF )I are independent, then each boson equation of motion

δL/δBI = 0 is satisfied separately.

In many cases the fermion variations are independent, in other cases one must supple-

ment the equations (2.6) with gauge field equations of motion [22]. It is in this way that

a bosonic field configuration BI(x) which supports Killing spinors can give a solution of

the bosonic equations of motion of the theory. The first order equations which determine

these BPS configurations of BI(x) are the integrability conditions for the Killing spinor

equations (δψµ)0 = 0 and (δλ)0 = 0.

To see more specifically how fake supergravity imitates and extends this result, we

construct the linear supergravity for the bosonic action

SB =

∫

dDx
√−g

[

1

2
R − 1

2
gµν∂µφ∂νφ − V (φ)

]

. (2.7)

We do this in some detail because the construction seems to be new and is an independent

sector of the more general situation with gauge field. We consider the action S = SB +

SF where SF is strictly bilinear in the supersymmetry partners ψµ and λ of the bosons.

SF contains all fermion bilinears suggested by true supergravity, each with an unknown

function of φ as coefficient, viz.

SF =

∫

dDx
√−g

[

4 ψ̄µΓµνρDνψρ + λ̄ΓµDµλ − A(φ) λ̄λ − B(φ) ψ̄µΓµνψν

−∂νφ (ψ̄µΓνΓµλ − λ̄ΓµΓν ψµ) − C(φ)(ψ̄µΓµλ − λ̄ Γµψµ)
]

. (2.8)

The accompanying linearized transformation rules are

δψµ =
(

Dµ + ΓµW (φ)
)

ǫ , δλ =
(

Γµ∂µφ − E(φ)
)

ǫ ,

δea
µ = −2

(

ǭγaψµ − ψ̄µγaǫ
)

, δφ = −ǭλ − λ̄ǫ .
(2.9)

The derivative Dµ includes the spin-connection,

Dµ = ∇µ ≡ ∂µ +
1

4
ωµabγ

ab . (2.10)

– 6 –
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A note on conventions: we use upper case Γ for gamma-matrices with coordinate indices,

and lower case γ for gamma-matrices with frame indices. We use ψ̄ = iψ†γt.

With some work,2 one can show that the local supersymmetry variation δ(SB + SF)

vanishes, provided that the potential V (φ) is related to the superpotential W (φ) by (1.3),

and the unspecified functions of the ansatz (2.8)-(2.9) are given by

A = −(d − 1)
(

2W ′′ − W
)

, B = 4(d − 1)W , C = E = 2(d − 1)W ′ . (2.11)

The computations needed to prove linear local supersymmetry are similar to those of

the component approach to supergravity. They require considerable γ-matrix algebra, but

dimension specific manipulations, such as Fierz rearrangement, are not required at linear

order. This is the reason that linear local supersymmetry is valid for any dimension! One

further difference is that in fake supergravity it is not necessary to specify the class of

spinor, e.g. symplectic Majorana spinors in true D = 5 supergravity. In our computations

we assume that all spinors are complex Dirac spinors.

The derivation of the linear fake supergravity action and transformation rules depends

only on the bosonic fields one is working with, in this case the metric gµν and a single scalar

φ. It does not depend on the symmetries of the solution which is sought. In the next stage

of the program one uses the fermion transformation rules of (2.9) as fake Killing spinor

equations and explores their integrability conditions in spacetimes of specific symmetry,

such as flat- and AdS-sliced domain walls. These examples are described briefly below.

The construction of the linear local supersymmetry theory can be bypassed as was done

for flat- or AdS-sliced domain walls in [1, 2, 6]. In the more complicated case of R × S3

slicing, we found it useful to work in two stages, first to construct the linear supergravity

model and then study the resulting fake Killing spinor conditions obtained from the model.

2.2 Flat sliced domain walls

The metric and scalar field of these domain walls take the form

ds2
d+1 = e2A(r) ηµν dxµdxν + dr2 , (2.12)

φ = φ(r).

The warp factor e2A multiplies the metric of d-dimensional Minkowski spacetime. When

the ansatz (2.12) is inserted in the fake Killing spinor conditions (see (2.9)-(2.11)), they

reduce to

Drǫ = δψr =
(

∂r + γrW
)

ǫ = 0 , (2.13)

Diǫ = δψi =
(

∂i −
1

2
A′γiγr + γi W

)

ǫ = 0 , (2.14)

D̂ǫ = δλ =
(

γrφ′ − 2(d − 1)W ′
)

ǫ = 0 . (2.15)

2More specifically, one finds linear conditions relating the unknown functions by requiring that the

coefficients of the following terms in δ(SB + SF) each vanish: (λ̄Γ · Dǫ), (λ̄Γ · ∂φ ǫ), (ψ̄µΓµνDνǫ), (ψ̄µ∂µφǫ)

and (ψ̄µΓµν∂νφ ǫ), and quadratic conditions from the coefficients of (λ̄ǫ) and (ψ̄µΓµǫ). The relation (1.3)

appears as the coefficient of (ψ̄µΓµǫ)

– 7 –
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The condition D̂ǫ = 0 implies φ′2 = 4(d−1)2W ′2. Consistency of (2.13) and (2.15) requires

[Di, D̂]ǫ = −γi
(

A′φ′ − 2Wφ′ γr
)

ǫ = 0 , (2.16)

which by (2.15) implies A′φ′ = −4(d− 1)WW ′. Choosing a definite sign for φ′ we can now

summarize the first order flow conditions

φ′(r) = −2(d − 1)W ′(φ) ,

A′(r) = 2W
(

φ(r)
)

. (2.17)

These equations are easily integrated and solve the field equations

d(d − 1)A′2 =
(

φ′2 − V (φ)
)

, (2.18)

φ′′ + dA′φ′ =
∂V

∂φ
, (2.19)

which are the independent equations obtained from the Einstein and scalar field equations

within the ansatz (2.12). The relationship (1.3) between the potential V and the superpo-

tential W is reproduced by (2.18) using (2.17). The Killing spinors take the form ǫ = eA/2η

where η is a constant spinor which satisfies γrη = −η.

2.3 AdSd sliced domain walls

The equations (2.18) are modified for the solution ansatz

ds2
d+1 = e2A(r)gij(x)dxµdxν + dr2, (2.20)

where gij is an AdSd metric with scale Ld, by the addition of the term −e−2A/L2
d on the

right side of the A′2 equation (2.18). The fake Killing conditions (2.14) are also modified,

namely ∂i is replaced by the AdSd covariant derivative ∇AdSd

i in δψi. Following the analysis

of [6], one finds (from (4.11) of [6]) that the integrability conditions are inconsistent.

Although it is not obvious, the inconsistency can be cured by doubling the spinors and

postulating a matrix superpotential W = σa Wa(φ) (or equivalently a 3-vector Wa). The

σa are the Pauli matrices. The matrix W must satisfy the commutator condition
[

W′, (d − 1)W′′ + W
]

= 0. (2.21)

If this condition is satisfied then the fake Killing conditions are consistent, and any solution

of the flow equations

φ′ = 2(d − 1)
√

WaWa , (2.22)

e−2A = 4L2
d

(WaWa)(W
′
bW

′
b) − (WaW

′
a)

2

(W ′
bW

′
b)

, (2.23)

produces a solution of the Lagrangian equations of motion. Note that the second equation

is algebraic. When Wa and W ′
a are parallel vectors, the inconsistency referred to above is

visible in (2.23). See [6] for further details of the analysis.

It was not necessary to construct a linear fake supergravity model in [6], but it is quite

easy to do so as outlined above. After doubling all spinors and including W one finds that

little new is required. The commutator condition (2.21) emerges as a condition for linear

supersymmetry. The relation (1.3) between V and W changes only by the replacements

W 2 → WaWa and W ′2 → W ′
bW

′
b.

– 8 –
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2.4 R × S3 solutions

With R × S3-slicing, the metric and scalar fields take the form

ds2
5 = −e2A(r)dt2 + dr2 + e2B(r)dΩ2

3 , φ = φ(r) .

Because of the positive curvature of S3, the Killing spinor equations (2.9)-(2.11) allow

only pure AdS5 as a solution, even with a matrix superpotential. To obtain more general

solutions we add a gauge field to the system, as we discuss in the next section.

3. Fake supergravity with a gauge field

We first describe how to modify the fake supergravity action to include a gauge field coupled

to the scalar, then study the equations of motion and a c-theorem.

3.1 Fake supergravity action

In this section we outline the construction of the fake supergravity model associated with

the bosonic action

SB =

∫

dDx
√−g

[

1

2
R − 1

2
gµν∂µφ∂νφ − 1

4
Q(φ)FµνFµν − V (φ)

]

. (3.1)

It is a considerable complication to add the gauge field to the previous model specified by

(2.7), (2.8) and (2.9). We need to construct an additional bilinear fermion action Sgauge

and transformation rules so that the variation of the total action

S = SB + SF + Sgauge (3.2)

vanishes to linear order in ψµ and λ. SB is given in (3.1) and SF in (2.8), and we take for

Sgauge

Sgauge =

∫

dDx
√−g

[

− iM(φ) ψ̄µ

(

ΓµΓρσΓν − ΓνΓρσΓµ
)

ψνFρσ + i P (φ) λ̄ ΓρσFρσλ

+iN(φ)
(

ψ̄µΓρσΓµλ − λ̄ ΓµΓρσψµ

)

Fρσ

]

. (3.3)

Each term in Sgauge consists of a fermion bilinear with the same γ-matrix structure as in

true supergravity multiplied by a function of φ to be determined. The gravitino ψµ and

the dilatino λ are charged, hence the derivatives Dµ that appear in the two fermion kinetic

terms of (2.8) now include a coupling to the gauge field,

Dµ = ∇µ + icAµ , (3.4)

where ∇µ as defined in (2.10) contains the spin connection. Gauge invariance requires that

the gravitino and dilatino carry the same charge so that the mixed λ̄(· · · )ψµ terms in (2.8)

are gauge invariant. The scalar φ is neutral.
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We also postulate the following transformation rules

δψµ =
[

∇µ + ΓµW (φ) + iX(φ)
(

Γµ
νρ − 2(D − 3) δν

µ Γρ
)

Fνρ + icAµ

]

ǫ , (3.5)

δλ =
[

Γµ ∂µφ − 2(D − 2)W ′(φ) + i Y (φ) ΓρσFρσ

]

ǫ ,

δea
µ = −2

(

ǭγaψµ − ψ̄µγaǫ
)

,

δφ = −ǭλ − λ̄ǫ ,

δAµ = −iα(φ)
(

ǭ ψµ − ψ̄µǫ
)

− iβ(φ)
(

ǭΓµλ + λ̄Γµǫ
)

.

The requirement of linear local supersymmetry of the total action (3.2) fixes all un-

known scalar functions and the U(1) coupling c. Terms independent of the gauge field are

a closed sector of the calculation, so the results (2.11) for A, B, C, E remain valid. To ex-

tend linear local supersymmetry to the gauge sector, we need to examine about 16 distinct

spinor bilinears. The coefficient of each is a combination of the unspecified scalar functions

of the ansatz in (3.3) and (3.5) and derivatives of those functions. Each such combination

must vanish. The information in these conditions fixes the scalar functions uniquely up to

integration constants which we then specify by imposing physical normalization conditions.

The analysis of the 16 conditions is tedious, so we simply quote results for D = 5 here.

Further details for general D are given in appendix A.

The results for Q, X, Y , W , and c which are actually needed to study the fake Killing

spinor conditions are:

Q(φ) = e2kφ , X(φ) =
1

4
√

3(2 + 3k2)
ekφ , Y (φ) = 6k X(φ) , (3.6)

W (φ) =
1

2L(2 + 3k2)

(

2 e−kφ + 3k2 e
2φ
3k

)

, c = − 1

L

√

3

2 + 3k2
,

while scalar functions in the actions (2.8) and (3.3) and the boson transformation rules of

(3.5) are

M(φ) = −6X(φ) , N(φ) = Y (φ) , P (φ) = 3(1 − 2k2)X(φ) ,

α(φ) = −24
X(φ)

Q(φ)
, β(φ) = 12k

X(φ)

Q(φ)
.

(3.7)

The potential V (φ), obtained by inserting the superpotential from (3.6) into (1.3), has

a unique local maximum at φ = 0. This is the asymptotic value of the scalar in all the

solutions we obtain. It is straightforward to expand the potential near the maximum and

compare with the potential of a general massive scalar in AdS5 of scale L:

V (φ) = − 6

L2
− 2

L2
φ2 = − 6

L2
+

1

2
m2φ2. (3.8)

We see that the parameter k has cancelled and the bulk scalar field has mass, m2 = −4/L2,

thus saturating the BF bound [10] for all values of k. It is curious that fake supergravity,

with one scalar and one gauge field, selects this value.3 The potential is analyzed further

in section 4.5.

3As shown in appendix A, for D 6= 5 the mass m2 is strictly above the BF bound.
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3.2 Equations of motion

The goal of this paper is to apply fake supergravity methods to obtain solutions of the

equations of motion of the bosonic theory (3.1) within the ansatz

ds2
5 = −e2A(r)dt2 + e2h(r)dr2 + e2B(r)dΩ2

3 ,

φ = φ(r) , (3.9)

Frt = ∂rAt(r) ≡ a′(r) .

The gauge field configuration is purely electric. The function h(r) specifies the choice of

radial coordinate, and we keep this freedom because different coordinates are convenient at

different points in our study. It is useful to employ a definite form of the 3-sphere metric,

namely

dΩ2
3 = dθ2 + sin2 θ dφ2 + cos2 θ dψ2 , (3.10)

with coordinate ranges θ ∈ [0, π
2 ] and φ,ψ ∈ [0, 2π].

The gravitational equations of motion are

Rµν = Tµν − 1

3
gµνTρ

ρ (3.11)

= ∂µφ∂νφ + gµν

(

2

3
V − 1

6
QF 2

)

+ QFµ
ρFνρ. (3.12)

In the ansatz (3.9), these equations become

Rrr = −A′′ − 3B′′ + (A′ + 3B′)(h′ − A′ − B′) + 4A′B′ (3.13)

= φ′2 +
2

3
e2h V − 2

3
e−2A a′2 Q ,

Rtt = e2A−2h
(

A′′ + A′(A′ + 3B′ − h′)
)

(3.14)

= −2

3
e2A V +

2

3
e−2h a′2 Q ,

Rθθ = 2 − e2B−2h
(

B′′ + B′(A′ + 3B′ − h′)
)

(3.15)

= e2B

(

2

3
V +

1

3
e−2A−2h a′2 Q

)

.

Note that Rφφ = sin2 θRθθ, Rψψ = cos2 θRθθ, and that off-diagonal components of the

Ricci and stress tensors vanish.

Later we will use the following combinations of the equations above:

e−A−3B+h
(

eA+3B−h B′
)′

= −2

3
e2h V + 2e2h−2B − 1

3
e−2A a′2 Q , (3.16)

e−A−3B+h
(

eA+3B−h A′
)′

= −2

3
e2h V +

2

3
e−2A a′2 Q , (3.17)

1

2
φ′2 − 3B′2 − 3A′B′ = −3e2h−2B + e2h V +

1

2
e−2A a′2 Q . (3.18)
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The gauge field and scalar equations of motion are

(

e−A+3B−h Qa′
)′

= 0 . (3.19)

e−A−3B+h
(

eA+3B−h φ′
)′

= e2h ∂V

∂φ
− 1

2
e−2A a′2

∂Q

∂φ
. (3.20)

The equations of motion can also be obtained from the one-dimensional effective action

S = −
∫

dr eA+3B−h

[

1

2
φ′2−3B′2−3A′B′−1

2
e−2A a′2 Q(φ)−3e2h−2B + e2h V (φ)

]

. (3.21)

Note that the field equations are not all independent. For example, (3.17) can be

derived by differentiating (3.18) and using the other equations of motion.

3.3 A c-theorem

The combination Rrr + e−2(A−h)Rtt of the Ricci tensor components gives

−3(B′′ + B′2 − A′B′ − B′h′) = φ′2. (3.22)

If we choose h = B−A and call the corresponding radial coordinate r̃, then, with ′ denoting

d/dr̃, we find that the quantity

C(r̃) ≡ C0

B′(r̃)3
, (3.23)

is monotonic increasing with r̃ for any positive constant C0.

We wish to adapt the argument of [20, 21] and interpret C(r̃) as a c-function. For

this purpose we write the AdS5 metric using two different radial coordinates, the first

corresponds to h = 0 and the second is r̃:

ds2
AdS5

= −L2 cosh2
( r

L

)

dt2 + dr2 + L2 sinh2
( r

L

)

dΩ2
3 (3.24)

= −L2(1 + e2r̃/L) dt2 +
dr̃2

1 + e−2r̃/L
+ L2 e2r̃/L dΩ2

3. (3.25)

The two coordinates are related by r̃ = L ln(sinh(r/L)). We see that B′(r̃) = 1/L. Now

consider a solution of the equations of motion in which the R×S3 sliced metric approaches

the boundary region, r̃ → +∞, of an AdS5 spacetime with scale LUV and the deep interior

region, r̃ → −∞, of an AdS5 spacetime with scale LIR. The c-function (3.23) then inter-

polates monotonically between these limits. With suitable normalization, i.e. choice of C0,

it coincides at the endpoints with the central charge [23] of putative dual 4-dimensional

conformal field theories on R × S3. Since LIR < LUV, the central charge decreases in the

renormalization group flow toward long distance.

It would be strange if the construction of a c-function required a particular radial

coordinate, and indeed it does not. For any choice of h(r), it is straightforward to see,

using (3.22), that

C(r) ≡ C0

(

dB

dr

)−3

e3(h+A−B) (3.26)
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is monotonic and in fact coincides with C(r̃). The interpretation is more straightforward

with the r̃ coordinate (and the AdS5 warp factor e
2r̃
L is pure exponential), but the physics

is more general. The monotonicity of C depends only on the equations of motion for the

solution ansatz, not the actual solution.

The interpretation of the c-function will be less clear for our solutions because they

contain a singularity in the interior. It turns out that the c-function C(r) is non-vanishing

at horizons, when present, while C(r) vanishes at the singularity.

4. Fake BPS and non-extremal solutions

We derive integrability conditions from the Killing spinor conditions of the fake supergrav-

ity model of section 3. We then solve these first order condition to obtain the most general

fake BPS solutions within the ansatz (3.9). The solutions are then generalized to include

a non-extremality parameter. We study relevant properties of the solutions.

4.1 Integrability conditions for fake Killing spinors

The Killing spinor equations obtained from the fermion transformation rules in (3.5) are

Dµǫ ≡
[

∇µ + iX(φ)
(

Γ νρ
µ − 4δ ν

µ Γρ
)

Fνρ + ΓµW (φ) + icAµ

]

ǫ = 0 , (4.1)

D̂ǫ ≡
[

Γµ∂µφ − 6W ′(φ) + iY (φ)ΓµνFµν

]

ǫ = 0 .

In the obvious diagonal frame for the metric (3.9)-(3.10), and with spin connections in-

cluded, the operators in (4.1) become

D̂ = e−hφ′ γr − 6W ′ + 2ia′Y e−A−hγrγt , (4.2)

Dt = ∂t −
1

2
A′eA−h γtγr + 4ia′Xe−hγr − eAWγt + icAt , (4.3)

Dr = ∂r + ehW γr − 4ia′Xe−A γt , (4.4)

Dθ = ∂θ +
1

2
B′eB−h γθγr + eBW γθ + 2ia′XeB−A−h γθγrγt , (4.5)

Dφ = ∂φ +
1

2
γφγθ cos θ + γφ

(

1

2
B′eB−h γr + eBW + 2ia′XeB−A−h γrγt

)

sin θ . (4.6)

Note that ′ means d/dr for the functions A, B, h, a, and φ of the solution ansatz of (3.9),

but means d/dφ for the superpotential W (φ).

Fake Killing spinors are solutions of the equations (4.1). Solutions exist if the commu-

tators of the 6 conditions vanish, i.e.

[Dµ, D̂]ǫ = 0 , [Dµ,Dν ]ǫ = 0 . (4.7)

The commutator conditions are a set of first and second order differential equations for

A(r), B(r), a(r), φ(r). It turns out that only the first order conditions, those obtained

from commutators not involving Dr, are sufficient to obtain solutions of the Lagrangian

equations of motion (3.16)-(3.20). Since the full analysis is tedious, we simply present
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some essential points and the results for the set of four first order scalar equations which

we actually use. In appendix C, we will present explicit fake Killing spinors which will

serve as a check that the full set of commutator conditions is satisfied.

The dilatino equation ehγr D̂ǫ = 0 reads

(φ′ − 6 ehW ′ γr + 2iY a′e−A γt)ǫ = 0 . (4.8)

It is essential to use this constraint on ǫ to derive the integrability conditions. For example,

if we multiply (4.8) by (φ′ + 6 ehW ′ γr − 2iY a′e−A γt), we obtain the scalar equation

φ′2 = 36W ′2e2h + 4Y 2a′2e−2A . (4.9)

From commutators not involving Dr we obtain the three additional equations

B′W ′ = −1

3
Wφ′ (4.10)

A′φ′ = −12 e2hWW ′ − 16XY a′2 e−2A (4.11)

A′B′ + B′2 = 8e2hW 2 − 16X2a′2e−2A + e2h−2B . (4.12)

This system of first order coupled differential equations can be solved exactly, as we demon-

strate next. The specific functions X(φ), Y (φ), Q(φ), W (φ) given in (3.6) are used to obtain

the solution.

4.2 Construction

We start by integrating the gauge equation of motion (3.19), and write its square as

a′2 e−2AX2 = σ2X−2e2h−6B . (4.13)

where σ is an integration constant. This relation may be inserted in (4.9) and the four

conditions (4.9)-(4.12) then reduce to coupled equations for the metric functions A, B,

h. To solve them it is useful to treat A, B, h as functions of the scalar φ. Temporarily

introducing a dot to denote derivatives with respect to φ, the equations become

e−2hφ′2 = 36Ẇ 2 + 144k2σ2X−2e−6B , (4.14)

Ḃ = −1

3

W

Ẇ
, (4.15)

e−2hφ′2Ȧ = −12WẆ − 96kσ2X−2e−6B , (4.16)

e−2hφ′2(Ȧ Ḃ + Ḃ2) = 8W 2 − 16σ2X−2e−6B + e2B . (4.17)

Plugging equations (4.14)-(4.16) into the l.h.s. of eq. (4.17) we find a very simple algebraic

equation for B,

e−2B =

∣

∣

∣

∣

∣

1

4σ
X

Ẇ

Ẇ + kW

∣

∣

∣

∣

∣

. (4.18)

However, eq. (4.15) can also be integrated directly using the superpotential in (3.6). In-

cluding a constant of integration, cB , we find

e−2B = cB

(

ekφ − e−
2
3k

φ
)

=
cB (2 + 3k2)L

k
ekφ− 2

3k
φ Ẇ (φ) . (4.19)
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The expressions for e−2B(φ) in (4.18) and (4.19) are proportional. Requiring equality fixes

the relationship between the two integration constants σ and cB ,

|σcB | =
1

8
√

3(2 + 3k2)3
. (4.20)

This can be understood as a condition that the first order equations (4.14)-(4.17) are

mutually consistent.

Next integrate (4.16) to find

e2A = cA e−
4
3k

φ

[

cBL2 + e
2
k
φ
(

e
2+3k2

3k
φ − 1

)−1
]

. (4.21)

It remains to find the scalar profile φ(r). Although (4.14) gives a separable equation,

it is difficult to integrate, so we proceed differently. We note that static 5D black holes

in the literature (see [16] and references therein) are most simply described via the point

singular harmonic function H(y) = 1+ q/y2, and that H and φ are related logarithmically.

We introduce H in two stages, first defining

φ(H) ≡ 3k

2 + 3k2
log H , (4.22)

where the multiplicative constant was chosen to simplify (4.19) and (4.21).

We temporararily regard H as the radial coordinate, r = H, which means that φ′ =

3k/[(2 + 3k2)H]. Then (4.14) immediately determines h as a function of H:

e−2h = 4(2 + 3k2)2 H2
(

Ẇ 2 + 4k2σ2X−2e−6B
)

(4.23)

=
4

L2Hp
(H − 1)2

[

H3p + cBL2(H − 1)
]

,

in which we have introduced the constant

p =
2

2 + 3k2
. (4.24)

The scale factors of the metric can then be written as

e2A = cAL2H−2p

(

cB +
1

L2(H − 1)
H3p

)

, (4.25)

e2B =
1

cB(H − 1)
Hp , (4.26)

e2h =
1

4(H − 1)3
Hp

(

cB +
1

L2(H − 1)
H3p

)−1

. (4.27)

The line element now contains the term e2hdH2.

The scale factors e2A and e2B diverge as H approaces H = 1, indicating that this is

asymptotic infinity (where we will find an AdS5 boundary). The scalar φ → 0 in this limit,

and φ = 0 is the unique root of W ′(φ) = 0 and is a local maximum of the potential V (φ).

We therefore introduce the radial coordinate y such that H → 1 for y → ∞, i.e.

H(y) = 1 +
q

y2
. (4.28)
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Here q is a constant of dimension (length)2.

The radial term in the line element now becomes

e2h dH2 = e2h(∂yH)2 dy2 = Hp

(

cB q +
y2

L2
H3p

)−1

dy2 (4.29)

and, the other scale factors are

e2A =
cAL2

q
H−2p

(

cB q +
y2

L2
H3p

)

, (4.30)

e2B =
1

q cB
y2Hp . (4.31)

The metric of pure AdS5 can be written as

ds2 = −
(

1 +
y2

L2

)

dt2 +

(

1 +
y2

L2

)−1

dy2 + y2 dΩ3 . (4.32)

We require that our metric match the leading terms of (4.32) as y → ∞, and this fixes the

remaining integration constants to be

cA =
q

L2
, cB =

1

q
. (4.33)

Thus we can write the general solution to the first order equations (4.9)-(4.12)

ds2 = −H−2pf dt2 + Hpf−1 dy2 + y2Hp dΩ3 , (4.34)

where

H(y) = 1 +
q

y2
, f(y) = 1 +

y2

L2
H3p . (4.35)

(The metric is not conformally flat.)

The scalar is

eφ = H
3kp
2 , (4.36)

and the gauge field strength is found from (4.13)

Fyt = a′ = σX−2eA−3B+h = 48(2 + 3k2)σ y−3H−2 . (4.37)

Using (4.20) and (4.33) we integrate (4.37) to find

At = a = ∓
√

3

2 + 3k2

q

q + y2
= ±

√

3

2 + 3k2
(H−1 − 1) , (4.38)

where we have fixed the constant of integration such that At → 0 for y → ∞.4

We have constructed the most general solutions of the first order equations derived

from integrability of the fake Killing spinor equations. We call them fake BPS solutions.

4The sign of the gauge potential and electric field are arbitrary and independent of the sign of q.
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For each value of the parameters k and L from the fake supergravity action, there is a

1-parameter set of solutions depending on q. The solutions carry electric charge which can

be calculated from the integral

qelec =
1

2π2

∫

S3

Q ⋆ F (4.39)

over the asymptotic 3-sphere. The result is

qelec = ±2

√

3

2 + 3k2
q . (4.40)

Since there are no charged sources for the gauge field, this charge is concentrated at the

center of the S3, where the scale factor e2B = y2Hp vanishes.

4.3 Non-extremal solutions

The solutions constructed above can be generalized beyond extremality. Inspired by the

solutions of [13] we simply modify f and At to be

f(y) = 1 +
y2

L2
H3p − µ

y2
(4.41)

and

At = − q̃

q

√

3

(2 + 3k2)

(

H−1 − 1
)

, (4.42)

where

q̃2 = q(q + µ) . (4.43)

It is straightforward to verify that the equations of motion (3.16)-(3.20) are satisfied for all

k, but the first order BPS equations are no longer satisfied. The electric charge is changed to

qelec = ±2

√

3

2 + 3k2
q̃ . (4.44)

The mass of the solutions with respect to the background AdS5 space is

M0 =
π

4G

[

3µ

2
+

6

2 + 3k2
q

]

. (4.45)

This is computed in section 5, where we also discuss a BPS bound.

4.4 Comparison with known solutions

It turns out that none of the extremal solutions found above by the fake supergravity

technique, and none of their non-extremal extensions, are new. We review relevant past

work here beginning with solutions found in the AdS/CFT context.

Superpotentials which are the sum of two exponentials, as in (3.6), have occurred

before in applications of 5D supergravity, namely in [24, 25]. There flat sliced domain wall
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solutions with no gauge fields were found. These Coulomb branch solutions lift to type IIB

supergravity and correspond to continuous distributions of D3-branes on subspheres of the

S5 of dimension n = 1, . . . , 5. In fact from eq. (15) of [24] (after the change µ = ±φ/
√

2

to agree with our conventions), one can see that the five superpotentials considered there

agree with our W (φ) for the specific values of k

k =
√

10
3 , 2√

3
,

√

2
3 , 1√

3
,

√

2
15 ,

n = 1, 2, 3, 4, 5 .
(4.46)

There is an even closer relation to our work. Namely, the scale factor A of the flat-sliced

ansatz (2.20), expressed as a function of the scalar field as A(φ) obeys the same equation

(4.15) as our B(φ) and has the same solution.

For k = 2/
√

3 and 1/
√

3 the theory (3.1) can be recognized as special cases of the

supersymmetric U(1)3 theory which again is a consistent truncation of Type IIB super-

gravity on S5. The U(1)3 theory consistently truncated to a single scalar field includes

two gauge fields [16]. The two solutions with k = 2/
√

3 and 1/
√

3 correspond to setting

either of those gauge fields to zero.5 Solutions of the further truncated theory, for which

the scalars completely decouple, leaving 5D minimal gauged supergravity, can be obtained

as the k → 0 limit (appropriately defined) of our solutions. Since they can be embedded as

solutions of the supersymmetric U(1)3 theory, the fake BPS solutions are in the three cases,

k = 0, 1/
√

3, 2/
√

3, truly supersymmetric [11, 12, 14]. Their non-extremal generalizations

coincide with those of [13]. The 10D lifts [15, 18] of these solutions, known as “superstars”,

describe distributions of giant gravitons rotating on the S5 [14].

One might hope to lift the other three values of k from table (4.46). This requires going

beyond the U(1)3 truncation, for example to the gauged SO(6) truncation [26]. However, it

appears that the gauge kinetic function of [26] is not compatible with our Q(φ) for the rele-

vant values of k [27]. It seems unlikely that the solutions can be lifted to 10D for general k.

The extremal and non-extremal solutions for general k are not new, but were found

in [19].6 Ref. [19] constructed similar solutions for any D ≥ 4. For general D ≥ 4 the

scalar potential of [19] can indeed be constructed from our superpotential (A.11).

4.5 Scalar “flow” and horizons

The scalar potential (1.3) constructed from the superpotential (3.6) is

V (φ) = − 6

(2 + 3k2)2 L2

[

18k2 e

(

2
3k
−k

)

φ+3k2(3k2−1) e
4
3k

φ−(3k2−4) e−2k φ

]

. (4.47)

The behavior of V depends on the value7 of 0 < k < ∞, but in all cases there is a local

maximum at φ = 0, which occurs at the AdS boundary of the solutions.

5This is not a consistent truncation for k = 1/
√

3, because the gauge field set to zero is then sourced by

a potentially non-vanishing F ∧F term. Note that in our analysis of linear supergravity it was in fact only

the k = 0 and k = 2/
√

3 cases which were fully linearly supersymmetric (see appendix A for details).
6The solutions of [19] are presented using a different coordinate system; it is easy to relate their choice

of radial coordinate to our y.
7We restrict to k > 0, since k → −k is equivalent to taking φ → −φ.
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0 < k < 1
√

3

V

φ

1
√

3
≤ k ≤ 2

√

3

V

φ

2
√

3
< k < ∞

V

φ

Figure 1: The behavior of the potential V for various values of k. For all k the potential has a

local maximum at φ = 0 so that V (0) = −6/L2. Our solutions represent a “flow” from AdS at the

top of the local maximum at φ = 0 towards φ → ∞ when q > 0, and towards φ → −∞ when q < 0.

When 1/
√

3 ≤ k ≤ 2/
√

3, the maximum at φ = 0 is global, but for 0 < k < 1/
√

3 or

k > 2/
√

3, the potential has a local minimum located at

φmin =
3k

2 + 3k2
log

(

3k2 − 4

2(3k2 − 1)

)

. (4.48)

Note that φmin < 0 for k > 2/
√

3, while φmin > 0 for 0 < k < 1/
√

3. The behavior of the

potential is sketched in figure 1. The local minimum appears to be of little significance for

the solutions, since the scalar is not stationary there due to the presence of a non-vanishing

electric field.

Solutions with q > 0

When q > 0, the range of the coordinate y is 0 to +infinity: y → +∞ is the asymptotic

AdS region, and y = 0 is the location of a curvature singularity. Since H(y) in (4.28)

is positive, the scalar φ (4.22) is non-negative. It flows from φ = 0 at the boundary to

φ → +∞ at the singularity.

It is possible to hide the curvature singularity behind an event horizon for q > 0 by

turning on the non-extremality parameter µ. The horizon is located at the (largest) zero

of the function f in (4.41). The conditions for the existence of a horizon are analyzed in

appendix B and we summarize the result here:

• For k > 1/
√

3 the solution has a single horizon whenever µ > 0.

• For k = 1/
√

3 the existence of a horizon requires µ > q2/L2. There is no inner

horizon.

• For k < 1/
√

3 an event horizon requires µ ≥ µk(q, L), where µk(q, L) solves (B.6)-

(B.7), as described in appendix B. Whenever µ > µk(q, L) the solution has an inner

horizon in addition to the event horizon. For µ = µk(q, L) the horizons coincide, and

the solutions are extremal but not fake BPS.

Consider a solution with a horizon located at y = yh. The Hawking temperature is

TH =
1

4π

f ′(yh)

[H(yh)]3p/2
, (4.49)
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and the entropy S, computed from the horizon area AH, is

S =
AH

4G
=

π2

2G
[H(yh)]3p/2 y3

h . (4.50)

We note in particular that the extremal non-fake-BPS solutions which exist for k < 1/
√

3

are characterized by having f(yh) = f ′(yh) = 0. Hence these have zero temperature and

finite horizon area.

The superstar cases, k = 1/
√

3 and 2/
√

3, are the borderline cases for the behavior of

the potential in figure 1. For k = 2/
√

3 the non-extremal superstars have horizons when

µ > 0. For k = 1/
√

3 a horizon exists when µ > q2/L2.

Solutions with q < 0

When q < 0, the y-coordinate ranges from the boundary y → ∞ to y =
√

|q|, where there

is a naked singularity. Note that 0 < H(y) < 1, so φ is negative. Referring to figure 1,

the scalar “flows” from AdS at the top of the local maximum towards the singularity at

φ → −∞.

It is not possible to hide the singularity behind a horizon for any value of µ when q < 0.

Note that the non-extremality parameter µ affects the electric field since q̃ =
√

q(q + µ).

A real electric field requires that

q̃2 = |q|(|q| − µ) > 0, i.e. µ < |q| (4.51)

However, with (4.51), we see from (4.41) that f(y) > 0 for y ≥
√

|q|. Thus we conclude

that for a physical electric field, one cannot have a non-extremal solution in which the

naked singularity is shielded.

It was proposed in [28] that a spacetime with a naked singularity may be considered

physical if the solution generalizes to one in which the singularity is hidden behind an event

horizon. This is not satisfied by the q < 0 solutions, which also fail another criterium [29],

namely that gtt should not diverge at the singularity, since that violates the UV/IR connec-

tion. Moreover, we show in section 5 that the mass of the fake BPS solutions with q < 0 is

negative. Each of these observations indicates that the solutions with q < 0 are unphysical.

5. Mass and charge from holography

In this section we derive properties of the boundary field theory from the AdS/CFT cor-

respondence. We will use the formalism of holographic renormalization in which field

theory observables are calculated from a properly renormalized on-shell action involving

the boundary limit of the bulk fields of our system. This formalism was developed in

several papers; for example see [23, 32 – 35].

5.1 Holographic stress-energy tensor

The form of the boundary action depends on the bulk fields and their mutual interaction.

Fortunately the relevant holographic observables were derived in [36] for the same bulk

system we are studying, namely the metric, a scalar dual to a ∆ = 2 operator, and
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massless gauge fields with kinetic term modified by an exponential function of the scalar.

In fact for the specific values k = 1/
√

3 and 2/
√

3, the bosonic Lagrangian (1.5), with

(3.6), agrees in full detail with the system studied in [36]. The scalar sector of the matter

system is invariant under the change k → 2/(3k), but the gauge field sector differs for these

two values. Gauge field fluctuations were added to the system in [37] and further studied

in [36]. There is an SO(4)× SO(2) flavor symmetry, and it turns out that the SO(2) gauge

field couples as in our system for the case k = 2/
√

3, while SO(4) gauge fields correspond

to k = 1/
√

3.

In the holographic renormalization formalism of [36] the bulk metric is parameterized

by

ds2 = L2 dρ2

4ρ2
+

1

ρ
gij(ρ, xi) dxidxj , (5.1)

in which ρ is the radial variable, and the xi are an arbitrary set of coordinates of the

boundary at ρ = 0. Thus our first task is to relate ρ to the radial variable y of (4.34). We

need this relation near the boundary, so we solve the equation

dy

dρ
= − L

2ρ
f1/2H−p/2 , (5.2)

as the series

y ∼ L√
ρ
(1 + a1ρ + a2ρ

2 + . . . ) , (5.3)

where the coefficients are given by

a1 = −1

4
− q

(2 + 3k2)L2
, (5.4)

a2 =
µ

8L2
+

q

4(2 + 3k2)L2
− q2(2 − 3k2)

4(2 + 3k2)2L4
. (5.5)

After reexpression in terms of ρ, the bulk fields gij(ρ, xi), Aµ(ρ, xi), φ(ρ, xi) of our

solution have expansions in the coordinate ρ which are determined by the boundary limit

of the field equations. In general, both powers of ρ and ln(ρ) occur in these expansions,

but it is obvious from the solution (1.7) that there are no logarithms in our case. We omit

them in the expansions which then take the simpler form:

gij = g
(0)
ij + g

(2)
ij ρ + g

(4)
ij ρ2 + · · · (5.6)

φ = φ0ρ + φ(2)ρ2 + · · · (5.7)

Ai = A
(0)
i + A

(2)
i ρ + · · · (5.8)

The leading term g
(0)
ij of the expansion (5.6) is the spacetime metric for the boundary gauge

theory. In our case this is the metric

ds2
4 = g

(0)
ij dxidxj = −dt2 + L2dΩ3 . (5.9)
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We have chosen the constant of integration in (5.3), so that L is the radius of the boundary

S3. Note that the scalar ”source rate” term, which would be proportional to ρ ln ρ is absent

for us and the leading term of φ vanishes at the ”vev rate”. For the gauge field, which is in

the gauge Aρ = 0, the expansion of Ai is more general than actually occurs. Namely, only

the component At is non-vanishing, and its source rate term A
(0)
t vanishes, leaving the vev

rate A
(2)
t ρ as the leading term.

We now apply the relevant formulas of sections 5–6 of [36] after conversion to our con-

ventions.8 Formula (5.45) of [36] gives the 1-point function of the field theory stress tensor:

〈Tij〉 =
1

4πGL

{

g
(4)
ij +

1

8

[

Tr (g(2))2 − (Tr g(2))2
]

g
(0)
ij − 1

2
(g(2))2ij

+
1

4
g
(2)
ij Tr g(2) +

1

6
(φ(0))2g

(0)
ij +

3

2
h

(4)
ij

}

, (5.10)

in which all contractions are taken with g
(0)
ij . The expression for h

(4)
ij is given in (5.38) of [36].

It involves various contractions of the curvature tensor of the boundary metric and vanishes

for the metric (5.9). The effect of the background gauge field was not considered in section 5

of [36], but it can be seen to vanish at the rate ρ2 at the boundary and thus not contribute to

the 1-point function (5.10). Using the quite general holographic formula g
(2)
ij = −L2(Rij −

g
(0)
ij R/6)/2, one can show that the two terms in

[

. . .
]

cancel, so that (5.10) reduces to

〈Tij〉 =
1

4πGL

[

g
(4)
ij − 1

2
(g(2))2ij +

1

4
g
(2)
ij Tr g(2) +

1

6
(φ(0))2g

(0)
ij

]

. (5.11)

We can now evaluate this 1-point function by applying the coordinate relation (5.3) to the

various contributions to the bulk solution. We then obtain the stress tensor

〈Ttt〉 =
1

4πGL

[

3

16
+

3µ

4L2
+

3

(2 + 3k2)L2
q

]

, (5.12)

〈Tθθ〉 =
1

4πGL

[

L2

16
+

µ

4
+

1

(2 + 3k2)
q

]

, (5.13)

for the field theory dual of the non-extremal solutions. The mass, M =
∫

S3〈Ttt〉 =

2π2L3 〈Ttt〉, is then

M =
π

4G

[

3L2

8
+

3µ

2
+

6

2 + 3k2
q

]

. (5.14)

The first term proportional to L2 is the Casimir energy [32]. Substracting it we have

M0 =
π

4G

[

3µ

2
+

6

2 + 3k2
q

]

. (5.15)

For extremal solutions one sets µ = 0. Note that using our asymptotic charge qelec in

(4.40), the mass formula suggests a fake BPS bound

M0 ≥ π

4G

√

3

2 + 3k2
qelec . (5.16)

8The scalar φ of [36] is multiplied by 1/
√

2, and we reinstate dimensions by including a factor of 1
4πG L

.
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We will examine this using the Witten-Nester method in section 5.2.

Note that the trace of the stress-energy tensor vanishes exactly,

〈T i
i〉 = −〈Ttt〉 +

3

L2
〈Tθθ〉 = 0 . (5.17)

This must be the case because the holograhic trace anomaly [23] is proportional to RµνRµν−
R2/3 and this vanishes for the R × S3 boundary metric.

Holographic renormalization also determines precise formulas for the vevs of the op-

erator Oφ dual to the bulk scalar and the conserved current J t dual to At. For the cases

k = 1/
√

3, 2/
√

3, for which our solutions agree with the superstars, Oφ is a component of

Tr(X2) and J t is the time component of a conserved R-current of N = 4 SYM theory.

Formula (5.33) of [36] gives the scalar vev

〈Oφ〉 =
1

L2

√
2 φ(0) =

3
√

2 k q

(2 + 3k2)L4
, (5.18)

where φ(0) is given by (5.7). From formula (6.77) of [36] we find that

〈J t〉 =
2

L3
A

(2)
t = 2

√

3

2 + 3k2

q̃

L5
. (5.19)

Note that

1

2π2

∫

S3

〈J t〉 =
qelec

L2
, (5.20)

with qelec given by (4.44).

5.2 Witten-Nester in fake supergravity

In this section we use the Witten-Nester method to calculate the energy of our solutions.

This method determines the energy of a spacetime with respect to a background spacetime

— such as flat Minkowski or anti-de Sitter space.

The Witten-Nester energy EWN is defined as the asymptotic boundary integral

EWN =

∫

∂Σ
⋆Ê , iÊµν = ǭ1Γ

µνρDρǫ2 − ǭ1

←
Dρ Γµνρǫ2 . (5.21)

Ê is the Witten-Nester 2-form and Dρǫ is given by the fake gravitino transformation rule

in (4.1). The spinors ǫ must asymptotically approach Killing spinors of the reference

background, in this case AdS5. Via Stokes’ theorem, the boundary integral (5.21) can be

converted to the bulk integral

EWN =

∫

Σ
d(⋆Ê) . (5.22)

This results holds only if there are no contributions from naked singularities or horizon

boundaries. In our applications below we assume that µ is large enough that our solutions

have regular horizons (cf. discussion in section 4.5 and appendix B). We further impose
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a condition on the Witten spinor ǫ so that the contribution from the horizon boundary

vanishes. For details of this procedure, and discussion of the existence of Witten spinors,

we refer to [38].

The standard approach of Witten-Nester is to show that the bulk integral (5.22) is

positive (semi)definite and vanishes only for solutions which admit Killing spinors. The

boundary integral contains the conserved charges (mass, electric charge, angular momen-

tum etc). Combining the information from the bulk and boundary integrals a BPS bound,

or positive energy statement, is derived.

A direct calculation of the bulk integral (5.22) with ǫ1 = ǫ2 gives

Bulk : EWN = −i

∫

Σ
dΣµ

[

2 δψνΓ
µνρδψρ −

1

2
δλ Γµ δλ (5.23)

−1

2
i ǫµλκρσFλκFρσ

(

Y 2 − 48X2 + 72bXQ−1
)

ǭ ǫ

]

.

This result depends on the form of the fake supergravity transformations, the identities

(3.6) and the Einstein and gauge field equations. It is valid for any solution of the equations

of motion. The first two contributions to the F ∧ F -term come from γ-matrix identities,

while the last one comes from including a Chern-Simons term (A.14) with coefficient b.

Using ǭ = ǫ†iγt and the Witten condition ΓaDaǫ = 0, the first two terms of (5.23) can

be shown to be positive definite. Had it not been for the F ∧ F -term we would use this to

derive a general BPS bound relating mass and charge. The coefficient of the F ∧ F -term

is identical to the first condition of (A.16) which was obtained by requiring the full action

to be linearly supersymmetric. As concluded in appendix A, the condition can only be

satisfied for k = ±2/
√

3 and b = 0, or for k = 0 and b = 1/(6
√

6).9

For the class of solutions with F ∧ F = 0, including our static electrically charged

generalized superstar solutions, we get a bound as follows. The boundary integral can

be evaluated by treating the spacetime of interest as a fluctuation about the asymptotic

background; in our case this background is global AdS space. There are contributions from

the metric, the scalar and the gauge field. For our solutions the Witten-Nester boundary

integral gives

Boundary : EWN = 2π2 v†1

{[

3µ

2
+

6 q

2 + 3k2

]

+
6 q̃

2 + 3k2
iγt

}

v2 , (5.24)

with v1 and v2 denoting unconstrained constant spinors. The first term of (5.24) is the

mass. The term with iγt comes from the Fyt-term in the S3 components of Dµǫ in (4.1)

and is proportional to the charge. The Witten-Nester argument tells us that the hermitean

symmetric quadratic form in (5.24) is non-negative, and we thus derive the inequality

M0 ≡ 3µ

2
+

6 q

2 + 3k2
≥ 6

2 + 3k2
|q̃| =

√

3

2 + 3k2
|qelec|, (5.25)

in which qelec is the electric charge (4.44) of the non-extremal solution. This is the bound

anticipated from the holographic calculation.

9As discussed in section 4.4, the supersymmetric theory of the other superstar case, k = ±1/
√

3, contains

an extra gauge field which must be included in order to obtain a general Witten-Nester bound.
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One might have expected that the fake supergravity framework would have allowed

the derivation of a general bound relating energy and charge. But this is false because

the F ∧ F -terms in (5.23) do not have the required positivity. The same conclusion holds

for any dimension D ≥ 5, where a fifth rank γ-matrix give the analogous non-positive

FλκFρσ-terms. In D = 4, however, the fifth rank γ-matrix vanishes identically, so linear

supergravity is complete and a general BPS bound can be derived.

6. Discussion

We have extended the method of fake supergravity with the purpose of exploring the

AdS/CFT correspondence for field theories on R × S3. An abelian gauge field has been

included in order to obtain non-trivial solutions. The bulk gauge field restricts the bulk La-

grangian and leaves only a choice of a real constant k which appears in the exponential e2kφ

of the coupling between the scalar and the gauge field. The fake supersymmetric electrically

charged solutions of the D = 5 first order flow equations, are generalizations of “superstar”

solutions. For special values of k these are truly supersymmetric superstars. Non-extremal

generalizations include a Schwarzschild-like parameter which makes it possible the hide the

otherwise nakedly singular source of the electric field behind an event horizon.

This work was originally motivated by the wish to find holographic duals of renormal-

ization group flows for field theories on R × S3. As it turned out our solutions describe

duals of states rather than deformations of N = 4 SYM theory. It is possible that fake

supergravity will lead to new flows when carried out for a bulk theory with more fields and

perhaps with a solution ansatz which only has the symmetry R × S3 asymptotically.

Fake supergravity has been applied to describe holographic renormalization group flows

and to the problem of (classical) stability. The applications also include a correspondence

between domain walls and cosmology solutions through analytic continuations [39]. Re-

cently, a different formulation of fake supergravity has been used to find first order flow

equations for D = 4 non-supersymmetric black hole solutions [40]. The diversity of the

applications demonstrate the power of the method.

Our work has illustrated the use of fake supergravity for finding and solving first order

flow equations, even in cases where the action is linearly supersymmetric only for a certain

class of field configurations which include the solution ansatz. This in turn revealed a lim-

itation in the application of fake supersymmetry to derivations of BPS bounds. The result

indicates a connection between obtaining general linear fake supersymmetry of the action

and achieving a BPS-type bound on the Witten-Nester energy. It would be interesting to

establish such a connection in more general contexts.
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A. Details of the fake supergravity construction

This appendix provides more information on the determination of the various scalar func-

tions in the fermion action and transformation rules given in section 3. Several γ-matrix

identities are used in the calculations, such as

γµνρ
(

γµ
στ − 2(d − 2)δ σ

µ γτ
)

Fστ = −(d − 1)
(

γνρστFστ + 2F νρ
)

, (A.1)

in D = d + 1 dimensions.

We begin by listing several of the λ̄(· · · )ǫ spinor bilinears which appear in

δ(Sb + Sf + Sgauge) and the conditions that their vanishing imposes on the scalar func-

tions:
(

λ̄γµγρσFρσDµǫ
)

N = Y ,
(

λ̄γµρσFρσ∂µφ ǫ
)

P = (d − 1)X − Y ′ ,
(

λ̄γµ∂νF
µνǫ

)

β Q = 2Y ,
(

λ̄γµFµν∂νφ ǫ
)

β Q′ = 4Y ′ .

(A.2)

Eliminating β from the two relations in which it appears gives

Q′

Q
= 2

Y ′

Y
. (A.3)

The analogues spinor bilinears involving the gravitino lead to the additional conditions

(

ψ̄µ

←
Dν (γµνρσFρσ + 2Fµν)ǫ

)

M = −2(d − 1)X ,
(

ψ̄µγµνρσFρσ∂νφ ǫ
)

Y + N = 4(d − 1)X ′ ,
(

ψ̄µFµν∂νφ ǫ
)

α Q′ = −16(d − 1)X ′ ,
(

ψ̄µ∂νF
µνǫ

)

α Q = −8(d − 1)X .

(A.4)

The ratio of the two relations involving α gives

Q′

Q
= 2

X ′

X
. (A.5)

Then, from (A.3) we learn that X and Y are proportional. It is then convenient to impose

Y = 2(d − 1)k X , (A.6)

with k a constant. From the two conditions involving N and Y above, we learn that

Y = 2(d − 1)X ′. Using (A.6), we find that

X = c1 ek φ (A.7)
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in which c1 is an integration constant which we will fix shortly.

The vanishing condition for the coefficient of (ψ̄µγµρσFρσǫ) is

c + 4(d − 1)(d − 2)XW − 2(d − 1)Y W ′ = 0 . (A.8)

Using (A.6) for Y and the exponential solution (A.7) for X, this condition becomes a

differential equation which determines the superpotential to be

W (φ) = − c

4c1(d − 1)
(

(d − 2) + (d − 1)k2
) e−kφ + c2 e

d−2
(d−1)k

φ
. (A.9)

Next we discuss the several spinor bilinears of the form (ψ̄ ΓF 2ǫ), in which Γ indicates a

matrix of the Clifford algebra of 5th, 3rd, or 1st rank. The 3 types are independent, so their

coefficients must vanish separately. The 5th rank case is discussed below. The 3rd rank

bilinear actually vanishes due to index contractions. The 1st rank terms give us the relation,

Q = 4
(

4(d − 2)(d − 1)X2 + Y 2
)

= 16 c2
1 (d − 1)

(

(d − 2) + (d − 1)k2
)

e2k φ, (A.10)

after use of (A.2), (A.4), (A.6) and (A.7).

The functional form of all scalar functions in the ansatz has been determined, and

we now fix the integration constants c1, c2 using some physical input. It is convenient to

choose the constant c1 so that Q(φ) → 1 at the boundary. We then choose c2 so that

the stationary point of W (φ) occurs at φ = 0. We also normalize the superpotential so

that the field equations of the theory admit AdSD with scale L as a solution. With these

conventions, the superpotential (A.9) becomes

W (φ) =
1

2L
(

(d − 2) + (d − 1)k2
)

[

(d − 2)e−k φ + (d − 1)k2e
d−2

(d−1)k
φ
]

. (A.11)

We regard k and L as the physical parameters of the model, and express the U(1) coupling

c in terms of them. We can summarize these relations among the parameters as

c = − d − 2

2L
√

d−2
d−1 + k2

, c1 =
1

4(d − 1)
√

d−2
d−1 + k2

, c2 =
k2

2L
(

d−2
d−1 + k2

) . (A.12)

With these choices, the potential takes the form

V (φ) = −d (d − 1)

2L2
− (d − 2)

L2
φ2 + . . . (A.13)

when φ → 0, i.e. near the AdSD boundary. This is the potential of massive scalar in AdSD

with mass m2 = −2(d−2)/L2. The BF bound of AdSD is m2
BF = −d2/(4L2), so for D = 5

we saturate the bound m2 = m2
BF, whereas for D = 4 or D > 5, the mass is strictly above

the bound, m2 > m2
BF. Thus for all D ≥ 4, fake supergravity has lead us to theories with

stable potentials V .10

10In an AdS/CFT context the bulk scalar generates a deformation of the CFT by an operator of dimension

d − 2 such as a scalar mass deformation M2ϕ2.
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The vanishing conditions for 10 spinor bilinears have been used so far to determine all

scalar functions of the initial ansatz. There are several other bilinears with at most rank

4 γ-matrices whose vanishing conditions can be seen to be satisfied using previous results.

These do not impose new conditions.

We do discuss briefly the issue of rank 5 γ-matrices which appear in the calculation as

ΓµνλρσFµνFλρ. For D = 4 these terms of course vanish identically and no new conditions

appear. We treat the cases D = 5 and D > 5 separately.

For D = 5, the 5th rank γ-matrix is proportional to the Levi-Civita symbol, γµνλρσ =

iǫµνλρσ , and so these terms enter in the same form as supersymmetry variations of a

Chern-Simons term. Chern-Simons terms are usually present in 5-dimensional supergravity

theories. Thus we might expect it necessary to add the bosonic term

LCS = b ǫκµνρσAκFµνFρσ (A.14)

to the Lagrangian of the fake supergravity model. Its supersymmetry variation is

δLCS = −3i b ǫκµνρσ
[

α
(

ǭ ψµ − ψ̄µǫ
)

+ β
(

ǭΓµλ + λ̄Γµǫ
)

]

FµνFρσ . (A.15)

In fact the supersymmetry variation δSF contains the spinor bilinears such as

(ψ̄τγτµνρσFµνFρσǫ) and (λ̄γµνρσǫ) which take the same form as the two terms of (A.15)

when the duality relations of the 5-dimensional Clifford algebra are used. The coefficents

of each bilinear are quadratic in the scalar functions of the model. Assuming that LCS is

present, the cancellation conditions of the gravitino and gaugino terms are

D = 5 :
Y 2 − 48X2 − 3b α = 0 ,

Y Y ′ − 8XY − 3b β = 0 .
(A.16)

The second condition is the derivative of the first if and only if b is constant, ie. independent

of φ. Of course, gauge invariance requires constant b. However, using the last relation of

(A.4) together with (A.6) and (A.7), one finds that there are only two solutions to (A.16),

namely (1) k = ±2/
√

3 and b = 0, and (2) k = 0 and b = 1/(6
√

6). Both these cases

correspond to consistent truncations of the D = 5 supersymmetric U(1)3 theory [16], as

discussed in section 4.4.

Thus we obtain a complete fake supergravity model only for these cases. However,

complete linear local supersymmetry is not really required for application to solutions with

purely electric field, since the two spinor bilinears themselves vanish if Frt is the only non-

vanishing component of the field strength. The fake supergravity approach can succeed

even if the complete linear local supersymmetry fails, provided that δ(Sb + Sf + Sgauge)

vanishes for the class of solutions under study.

For D > 5, the condition that all 5th rank Γ-matrices cancel is

Y 2 = 4 d (d − 1)X2 . (A.17)

This selects the values

D > 5 : k = ±
√

d

d − 1
(A.18)
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Again, for the purpose of fake supergravity, it is only necessary to impose the condition

(A.17) if F ∧ F is non-vanishing for the solutions of interest.

It is somewhat surprising that the matrix structure of the superpotential W(φ), which

is required for AdSd sliced domain walls does not appear in our study. In fact the ansatz

(3.3), (3.5) accommodates similar matrices at several places. For example, the spinors could

be doubled and X and Y replaced by matrices. However, fake supergravity is modeled

on real D = 5, N = 2 supergravity in which spinor doubling occurs because real D = 5

supergravity requires symplectic Majorana spinors. So we consulted the form of the fermion

transformation rules in [41] and found that analogues of X, Y are diagonal in the symplectic

indices. Thus we assumed that X, Y are scalars, rather than matrices. Then, compatibility

of (A.8) with the matrix constraint (2.21) tells us that W (φ) is also scalar.

B. Conditions for existence of a horizon

Our fake BPS solutions are all nakedly singular. The non-extremal solutions have horizons

when the function f has a zero for y > 0. It is useful to examine the condition f(y) = 0

using H = 1 + q/y2 as a variable instead of y, and to formulate the problem in terms of

the function

g(H) =
q2

L2 y2
f(y)

∣

∣

∣

y→H
= q̄2H3p + q̄(H − 1) − µ̄(H − 1)2 , (B.1)

where we have introduced dimensionless parameters q̄ = qL−2 and µ̄ = µL−2. We focus on

the case of q̄ > 0 and µ̄ > 0. The condition for having a horizon is then that there exists

an H0 > 1 such that g(H0) = 0. Note that g(1) = q̄2 > 0. Depending on the behavior of g

for H → ∞ there three cases:

1. Case k > 1√
3

(i.e. 0 < p < 2/3): For H ≫ 1, we have g(H) ∼ −µ̄H2 < 0. In this case

g always has a single zero for H > 1, and so for any values of q > 0 and µ > 0, the

solution has a horizon.

2. Case k = 1√
3

(i.e. p = 2/3): For H ≫ 1, we have g(H) ∼ (q̄2−µ̄)H2+(q̄+2µ̄)H +. . . .

So if µ̄ > q̄2, g has a zero. When µ̄ ≤ q̄2, it is straightforward to see that g has no

local extrema for H > 1, and therefore g > 0 for H > 1. In conclusion, for k = 1√
3

the solutions have horizons only if µ̄ > q̄2, i.e. if µ > q2/L2.

3. Case 0 < k < 1√
3

(i.e. 2/3 < p < 1): Since g(H) → q̄2H3p > 0 for H ≫ 1, the

existence of a zero of g requires that g has a local minimum Hmin > 1 such that

g(Hmin) ≤ 0. Note that g′(1) = q̄(1 + 3pq̄) > 0, so g can only have a local minimum

if it also has a local maximum. So we need g′ to have two separate zeroes. That in

turn requires that g′′ has a zero for H > 1. Solving g′′ = 0 gives

H3p−2 =
2µ̄

3p(3p − 1)q̄2
. (B.2)

Requiring H3p−2 > 1 in (B.2) gives

µ̄ >
3

2
p(3p − 1)q̄2 (B.3)
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as a necessary condition for having a horizon. Note that (B.3) implies µ̄ > q̄2.

The condition is (B.3) not sufficient, so we push the analysis further to solve the

“extremal” case where g has a minimum at g = 0; i.e. we solve the system g(H) = 0

and g′(H) = 0.

Zeroes of g′ are solutions H > 1 to the equation

H3p−1 =
2(H − 1)µ̄ − q̄

3pq̄2
. (B.4)

Plugging this into g gives

3p g(H) = −(3p − 2)µ̄H2 + (3p − 1)(q̄ + 2µ̄)H − 3p(q̄ + µ̄) . (B.5)

Let the two zeroes of (B.5) be H±
0 , with H−

0 < H+
0 . One finds that H±

0 are real and

satisfy H±
0 > 1. However, for H = H−

0 , the r.h.s. of (B.4) is negative, so we discard

this as a solution. Setting H = H+
0 in (B.4) gives an equation that can be used to

determine µ̄ numerically for given q̄ and p:

(H+
0 )3p−1 =

2(H+
0 − 1)µ̄ − q̄

3pq̄2
, (B.6)

with

H+
0 =

(3p − 1)(q̄ + 2µ̄) +
√

(3p − 1)2q̄2 + 4µ̄(q̄ + µ̄)

2(3p − 2)µ̄
. (B.7)

It can be shown that whenever the condition (B.3) holds, the r.h.s. of (B.6) is greater

than 1.

To summarize, for given q̄ and 0 < k < 1√
3
, µ needs to be sufficiently large in order

for a horizon to exist. Condition (B.3) is a necessary, but not sufficient, condition.

Solving (B.6) and (B.7) numerically for given q̄ and p gives the value µ̄k(q̄) for the

“extremal” black hole solution which has minimum energy above extremality for

given charge q̄. Re-introducing the AdS scale L, we denote the above µ-bound by

µk(q, L). When µ > µk(q, L), the function g has two zeroes and the solutions have

both an inner and an outer horizon.

As an example, consider k =
√

2/3 (i.e. p = 3/4) and q̄ = 1. Then condition (B.3)

gives µ̄ > 45/32 ≈ 1.4, whereas solving (B.6) shows that the extremality bound is

µ̄k=
√

2/3(q̄ = 1) ≈ 2.3 for this example.

C. Fake Killing spinors

We consider first Killing spinors for pure AdS5 in the coordinates obtained as the q = µ = 0

limit of our solutions. Their form serves as a useful starting point for the construction of

fake Killing spinors for the extremal solutions above, and they play a direct role in the

Witten-Nester energy computation.
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In the diagonal frame for the AdS5 metric (4.32), it is straightforward to show that

the AdS5 Killing spinor ǫ0 can be written

ǫ0 =
[

g+(y)P+ + g−(y)P−
]

e−
1

2L
γt t v , (C.1)

where we have introduced the projectors P± = 1
2(1 ± γy) and functions

g±(y) =
[

√

f0(y) ∓
√

f0(y) − 1
]1/2

, f0(y) = 1 +
y2

L2
. (C.2)

The spinor v is one variant of the S3 Killing spinors obtained in [30]. It satisfies

∇̄iv = −1

2
γ̄iγ

yv , (C.3)

where ∇̄i and γ̄i denote the derivatives (including spin-connections) and γ-matrices for the

unit S3.

The two presentations of the AdS5 metric (3.24) and (4.32) differ by the relation

y = L sinh(r/L) of their radial coordinates. In the coordinate r, the Killing spinor (C.1)

can be rewritten as the simple expression

ǫ0 = e
1

2L
γ5r e−

1
2L

γt t v , (C.4)

which can be shown to agree with the form in appendix E of [31].

The extremal solutions specified by (4.34)-(4.38) admit fake Killing spinors. To find

them, we make the ansatz

ǫ =
[

f+(y)P+ + f−(y)P−
]

u(t, θi) , (C.5)

where θi are the coordinates of the sphere S3. This ansatz must satisfy the fake Killing

spinor equations (4.1) (using (4.2)-(4.5)) when the solution data (4.34)-(4.38) is inserted.

Analyzing the near-AdS limit of the equations, we find that the condition

iγtu = u . (C.6)

is required. We expect that our solutions are at most half fake BPS, and we therefore

impose the condition (C.6) when constructing exact fake Killing spinors. With this, it can

be shown that the equations D̂ǫ = 0 and Dyǫ = 0 are solved if

f±(y) = H(y)
− 1

2+3k2

[

√

f(y) ∓
√

f(y) − 1
]1/2

, (C.7)

where f(y) is given in (4.35).

Next Dtǫ = 0 reduces to

i ∂tu =
1

2L
u , (C.8)

with solution

u(t, θi) = e−i 1
2L

t v(θi) . (C.9)
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The spinor v depends only on the S3 coordinates. Finally, Diǫ = 0, with i running over

the S3 coordinates θi, simplifies to the conditions

P±

(

∇̄iv ∓ 1

2
γ̄iv

)

= 0 , (C.10)

which are simply equivalent to S3 Killing spinor equations (C.3).

Thus our solutions admit fake Killing spinors

ǫ =
[

f+(y)P+ + f−(y)P−
]

e−i 1
2L

t v , (C.11)

with f± given by (C.7) and with v, satisfying (C.3), a Killing spinor on the unit S3 [30],

constrained by the half fake BPS projection condition

iγtv = v . (C.12)

Note that f± = g± for q = 0, with g± in (C.2); in particular our fake Killing spinors

asymptotically approach the AdS Killing spinors (C.1).

The Killing spinor bilinears (ǭ Γµǫ) are Killing vectors of the bulk metric (4.34), whose

isometry group is R × SO(4). This is the compact subgroup of the SO(4, 2) group whose

Killing vectors are denoted by Kµ
[AB] and whose spinor representation has generators γ[AB]

given by

γ[ab] =
1

2
γaγb a, b = 0, 1, 2, 3, 4 rotations and boosts (C.13)

γ[a5] =
1

2
γa energy and “momentum′′. (C.14)

The spinor bilinears for both pure AdS5 and R × S3 solutions are then given by

(ǭ0Γ
µǫ0) = v̄γ[a5]v Kµ

[a5] +
1

2
v̄γ[ab]v Kµ

[ab] (C.15)

(ǭΓµǫ) = v̄γ[05]v Kµ
[05] +

1

2
v̄γ[ab]v Kµ

[ab], a, b = 1, 2, 3, 4. (C.16)

Note the restriction to energy and spatial rotations in the R × S3 case which is due to the

projection constraint (C.12).
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[29] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds

and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018].
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